Translate

28.5.12

Junho

Junho
6 Samir Gorsky CANCELADO (transferido para o próximo semestre)
13 (14h00 às 15h50) António de Freitas "Os versos 116-126 da Teogonia de Hesíodo lidos com
olhos matemáticos"
 (16h10 às 18h00) Pedro Lemos CANCELADO (transferido para o próximo semestre)
27 Marcos Alves CANCELADO (transferido para o próximo semestre)

27.5.12

30/05 - Tony Marmo


Systems, Presuppositions and Implicatures: an exploratory, logical and philosophical investigation

In this work we shall, from the logical and philosophical standpoint, investigate two pragmatic phenomena known as presupposition and implicature, associating them to more general features of human rationality, such as economy and consistency, and to the current logical pluralism, including some controversies between the classical tradition and more recent alternative approaches. Grice has articulated an analysis of such phenomena based on principles governing conversation or interaction between cooperative and rational beings. We dissent from the gricean tradition, and propose that implicatures are processed by the ‘sieving of information’, rather than by the mere exploitation of maxims. By providing precise definitions to the concepts of presupposition and implicature, it is possible to build a logical framework, to be called presuppositional systems, which either extend other logical systems (such as the propositional calculus, for instance), the results of which we shall present hereinafter.
 
 
Keywords: Presupposition, Implicature, Scalar Implicatures, Inference, Logical Systems, Philosophical Logic, Algebraic Structures, Implication Theory, Non-Classical Logics, Rationality, Language, Semantics, Pragmatics.

22.5.12

23/05 - Carles Noguera

"Mathematical Fuzzy Logic: origins and development".

Carles Noguera
http://www.carlesnoguera.cat/?q=en/shortCV

Abstract: "This talk will provide a basic introduction to Mathematical Fuzzy Logic (MFL) from both a conceptual and a historical point of view. We will explain the origins of Fuzzy Set Theory and its motivations in the vagueness problem, how MFL was proposed to provide solid logical foundations to Fuzzy Set Theory, and how it has evolved into a field of Mathematical Logic."

29.4.12

16/05 - Maurício Coutinho

LOCKE ON THE QUANTITY THEORY OF MONEY

Maurício Coutinho, IE Unicamp

SUMÁRIO

As contribuições de Locke à economia monetária tiveram um impacto imenso em sua
época (anos 1690-1696) e mantiveram-se no centro dos debates monetários por mais de
150 anos. De um modo geral, foi muito criticada a concepção de que o valor da moeda
é invariável e determinado pelo “consentimento comum”, enquanto o pioneirismo
na formulação da teoria quantitativa do dinheiro é até hoje admitido. A defesa de
uma “moeda sólida” na crise monetária inglesa do final do século XVII converteu
Locke em uma espécie de patrono da austeridade monetária, pelos séculos afora.
A principal preocupação de Locke foi evitar que a perda de valor da moeda (seja por
redução por lei da taxa de juros, seja por debasement) prejudicasse o nível de atividades.
Neste particular, alinhou-se à linha dominante de pensamento monetário, anteriormente
a Hume: a oferta monetária afeta o nível de negócios. Temos aqui um paradoxo, pois a
teoria quantitativa do dinheiro pressupõe o inverso, ou seja, que as variações da oferta
monetária exerçam impacto sobre o nível de preços.
Outro paradoxo do pensamento monetário lockeano: sua posição contrária ao
debasement supõe que o valor da moeda seja invariável (ecos do Segundo Tratado
sobre o Governo); já a teoria quantitativa da moeda, assume a variação do valor da
moeda.
O propósito do texto é discutir todas estas dimensões, em princípio incompatíveis, da
teoria monetária de Locke: valor invariável da moeda, aceitação de que a moeda não é
um standing value (seu valor varia), aceitação de que a retração na oferta monetária
afeta o nível de atividades, assim como nível de preços. Destaque especial será dado
à visão de Locke sobre contrato, a qual fornece uma boa pista para entendermos suas
posições no debate monetário inglês e na teoria e política monetária de modo geral.

ABSTRACT

Although directed to the English monetary debates of the 1690s, Locke’s monetary
thinking had an enduring impact on monetary theory. He is not only acknowledged as
a forerunner of the quantity theory of money, but, at least until 1850, his contributions
were taken as a point of reference for many monetary debates and theories. Locke
was especially concerned with the fact that debasement and fixing by law the interest
rate would retract the supply of money, thus harming trade – that is, depressing the
economic activities. In this respect, Locke kept aligned with the dominant 17 th and
early 18th century stand: money as determinant of trade. Paradoxically, quantity theory
of money, also endorsed by Locke, implies the opposite, or the neutrality of money
(money impacts prices).
Another Lockean paradox: echoing the Second Treatise of Government, his opposition
to debasement assumed the invariability of the value of money. Yet, quantity theory
presupposes the opposite, that is, that the value of money varies.
The paper aims at discussing the many dimensions, not always compatible, of Locke’s
monetary thinking: invariable value of money, acknowledgement that money is
not always a standing value, negative impacts of a retraction of money supply on
production, impacts on the price level. It will be argued that Locke’s conception of

contracting is instrumental to the understanding of his stand on the English monetary
debates and on monetary theory and policy, in general.

09/05 - Renata de Freitas

"Graph calculi for relation algebras"

Renata de Freitas
Instituto de Matemática, UFF (Niterói, RJ - Brasil)

Abstract:
Traditionally, formulas are written on a single line. S. Curtis and G.
Lowe (1995) suggest a more visually appealing alternative for the case
of relation algebra: using graphs for expressing properties and
reasoning about them in a natural way. We extended their approach to
diagrams that are sets of graphs. The basic intuitions are quite
simple, leading to playful and powerful systems for deriving
inclusions between diagrams that are consequences of sets of
inclusions between diagrams taken as hypotheses. We give a proper
formulation of these systems as logical calculi and discuss soundness,
completeness and decidability.
(Joint work with Paulo Veloso, Sheila Veloso and Petrucio Viana.)

9.4.12

11/04 - 赵贤 (Zhao Xian)

Nanjing University, China

"On  Logical Structure of Hope".
Abstract: One person has a hope means that he hopes a proposition be true, so that hope is the modality of the proposition. Hope logic studies on logical relations among hope modal propositions. Rational hope is deductively enclosed, consistent,self-affirmed, etc., and these properties can compose axioms of hope logic. An important property of hope is that people hope their hopes can be true, which are not necessarily true. It is the particular axiom of hope logic, which is called ‘hope axiom’. By means of possible worlds semantics, some complete and reliable hope logic systems can be obtained with different axioms.

Keywords: Hope logic, Hope axiom, Mental logic.